Coefficients of ergodicity generated by non-symmetrical vector norms
Lešanovský, Antonín
Czechoslovak Mathematical Journal, Tome 40 (1990), p. 284-294 / Harvested from Czech Digital Mathematics Library
Publié le : 1990-01-01
Classification:  15A18,  15A51,  60J10
@article{102380,
     author = {Anton\'\i n Le\v sanovsk\'y},
     title = {Coefficients of ergodicity generated by non-symmetrical vector norms},
     journal = {Czechoslovak Mathematical Journal},
     volume = {40},
     year = {1990},
     pages = {284-294},
     zbl = {0719.60067},
     mrnumber = {1046294},
     language = {en},
     url = {http://dml.mathdoc.fr/item/102380}
}
Lešanovský, Antonín. Coefficients of ergodicity generated by non-symmetrical vector norms. Czechoslovak Mathematical Journal, Tome 40 (1990) pp. 284-294. http://gdmltest.u-ga.fr/item/102380/

F. L. Bauer E. Deutsch J. Stoer Abschätzungen für die Eigenwerte positiver linearen Operatoren, Linear Algebra and Applicns. 2 (1969), 275-301. (1969) | MR 0245587

G. Birkhoff Lattice Theory, Amer. Math. Soc. Colloq. Publicns., vol. XXV, Providence, R. I.-3rd edition (1967). (1967) | MR 0227053 | Zbl 0153.02501

R. L. Dobrushin Central limit theorem for non-stationary Markov chains I, II, Theory Prob. Appl. 1 (1956), 63-80, 329-383 (English translation). (1956) | MR 0086436 | Zbl 0093.15001

J. Hajnal Weak ergodicity in non-homogeneous Markov chains, Proc. Camb. Phil. Soc. 54(1958),233-246. (1958) | MR 0096306 | Zbl 0082.34501

R. A. Hom; Ch. A. Johnson Matrix Analysis, Cambridge University Press, Cambridge, London, New York, New Rochelle, Melbourne and Sydney (1985). (1985) | MR 0832183

S. Karlin A First Course in Stochastic Processes, Academic Press, New York and London (1968). (1968) | MR 0208657 | Zbl 0177.21102

D. G. Kendall Geometric ergodicity and the theory of queues, In: Matehmatical Methods in the Social Sciences, K. J. Arrow, S. Karlin, P. Suppes (eds.), Stanford, California (1960). (1960) | MR 0124088

P. Kratochvíl A. Lešanovský A contractive property in finite state Markov chains, Czechoslovak Math. J. 35 (110) (1985), 491-509. (1985) | MR 0803042

A. Paz Introduction to Probabilistic Automata, Academic Press, New York (1971). (1971) | MR 0289222 | Zbl 0234.94055

A. Rhodius The maximal value for coefficients of ergodicity, Stochastic Processes Appl. 29 (1988), 141- 143. (1988) | Article | MR 0952825 | Zbl 0657.60092

U. G. Rothblum; C. P. Tan Upper bounds on the maximum modulus of subdominant eingenvalues of nonnegative matrices, Linear Algebra Appl. 66 (1985), 45-86. (1985) | Article | MR 0781294

Т. А. Сарымсаков Основы теории процессов Маркова, Государственное издательство технико-теоретической литературы, Москва (1954). (1954) | Zbl 0995.90535

Т. А. Сарымсаков К теории нзоднородных цепей Маркова, Докл. АН УзССР 8 (1956), 3-7. (1956) | Zbl 0995.90522

E. Seneta On the historical development of the theory of finite inhomogeneous Markov chains, Proc. Camb. Phil. Soc. 74 (1973), 507-513. (1973) | Article | MR 0331522 | Zbl 0271.60074

E. Seneta Coefficients of ergodicity: structure and applications, Adv. Appl. Prob. 11 (1979), 576-590. (1979) | Article | MR 0533060 | Zbl 0406.60060

E. Seneta Non-negative Matrices and Markov Chains, Springer-Verlag, New York, Heidelberg and Berlin (1981). (1981) | MR 2209438 | Zbl 0471.60001

C. P. Tan A functional form for a particular coefficient of ergodicity, J. Appl. Prob. 19 (1982), 858-863. (1982) | Article | MR 0675151 | Zbl 0501.60074

C. P. Tan Coefficients of ergodicity with respect to vector norms, J. Appl. Prob. 20 (1983), 277-287. (1983) | Article | MR 0698531 | Zbl 0515.60072

D. Vere-Jones Geometric ergodicity in denumerable Markov chains, Quart. J. Math. Oxford (2) 13 (1962), 7-28. (1962) | Article | MR 0141160 | Zbl 0104.11805