@article{102356, author = {Roman Fri\v c}, title = {Cauchy sequences in $\Cal L$-groups}, journal = {Czechoslovak Mathematical Journal}, volume = {40}, year = {1990}, pages = {25-30}, zbl = {0721.54004}, mrnumber = {1032360}, language = {en}, url = {http://dml.mathdoc.fr/item/102356} }
Frič, Roman. Cauchy sequences in $\Cal L$-groups. Czechoslovak Mathematical Journal, Tome 40 (1990) pp. 25-30. http://gdmltest.u-ga.fr/item/102356/
Sequentially determined convergence spaces, Czechoslovak Math. J. 37 (1987), 231-247. (1987) | MR 0882596 | Zbl 0652.54001
Filter convergence via sequential convergence, Comment. Math. Univ. Carolin. 27 (1986), 69 - 81. (1986) | MR 0843421 | Zbl 0591.54003
Sequentially determined convergence spaces, General Topology and its Relations to Modern Analysis and Algebra, VI (Proc. Sixth Prague Topological Sympos., 1986), Heldermann Verlag, Berlin 1988, 61-68. (1986) | MR 0952591
Some relations between sequential and filter convergence, Convergence Structures 1984 (Bechyně, 1984), Math. Res., 24, Akademie-Verlag, Berlin 1985, 65-70. (1984) | MR 0835472
Urysohn's condition and Cauchy sequences, Proceedings of the Seminar of S. L. Sobolev No 1, Novosibirsk 1978, 122- 124. (1978) | MR 0567508 | Zbl 0423.22001
On c-embedded sequential convergence spaces, Convergence Structures and Applications to Analysis, Abh. Akad. Wiss. DDR, Abt. Math.-Naturwiss.-Technik N4 (1979), 33-36. (1979) | MR 0613999
Sequential structures, Convergence Structures and Applications to Analysis, Abh. Akad. Wiss. DDR, Abt. Math.-Naturwiss.-Technik N4 (1979), 37-56. (1979) | MR 0614000
Completions of convergence groups, General Topology and its Relations to Modern Analysis and Algebra, VI (Proc. Sixth Prague Topological Sympos., 1986), Heldermann Verlag, Berlin 1988, 187-201. (1986) | MR 0952605
Sequential convergence in free groups, Rend. Ist. Matem. Univ. Trieste 18 (1986), 200-218. (1986) | MR 0928331
Completeness of sequential convergence groups, Studia Math. 77 (1984), 455-464. (1984) | MR 0751766
On completions of convergence commutative groups, General Topology and its Relations to Modern Analysis and Algebra III (Proc. Third Prague Topological Sympos., 1971), Academia, Praha 1972, 335-340. (1971) | MR 0365451
Solution of a problem of Josef Novák about convergence groups, Bolletino Un. Mat. Ital. (5) 14-A (1977), 375-381. (1977) | MR 0451220 | Zbl 0352.54017