On $L^2$-projections on a space of stochastic integrals
Rheinländer, Thorsten ; Schweizer, Martin
Ann. Probab., Tome 25 (1997) no. 4, p. 1810-1831 / Harvested from Project Euclid
Let $X$ be an $\mathbb{R}^d$-valued continuous semimartingale, $T$ a fixed time horizon and $\Theta$ the space of all $\mathbb{R}^d$ -valued predictable $X$ -integrable processes such that the stochastic integral $G(\vartheta)=\int\vartheta dX$ is a square-integrable semimartingale. A recent paper gives necessary and sufficient conditions on $X$ for $G_T(\Theta)$ to be closed in $L^2(P)$. In this paper, we describe the structure of the $L^2$-projection mapping an $\mathscr{F}_T$-measurable random variable $H \in L^2(P)$ on $G_T(\theta)$ and provide the resulting integrand $\vartheta^H \in \Theta$ feedback form. This is related to variance-optimal hedging strategies in financial mathematics and generalizes previous results imposing very restrictive assumptions on $X$. Our proofs use the variance-optimal martingale measure $\tilda{P}$ for $X$ and weighted norm inequalities relating $\tilda{P}$ to the original measure $P$.
Publié le : 1997-10-14
Classification:  Semimartingales,  stochastic integrals,  $ L^2$-projection,  variance-optimal martingale measure,  weighted norm inequalities,  Kunita–Watanabe decomposition,  60G48,  60H05,  90A09
@article{1023481112,
     author = {Rheinl\"ander, Thorsten and Schweizer, Martin},
     title = {On $L^2$-projections on a space of stochastic integrals},
     journal = {Ann. Probab.},
     volume = {25},
     number = {4},
     year = {1997},
     pages = { 1810-1831},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1023481112}
}
Rheinländer, Thorsten; Schweizer, Martin. On $L^2$-projections on a space of stochastic integrals. Ann. Probab., Tome 25 (1997) no. 4, pp.  1810-1831. http://gdmltest.u-ga.fr/item/1023481112/