Local asymptotic classes for the successive primitives of Brownian motion
Lachal, Aimé
Ann. Probab., Tome 25 (1997) no. 4, p. 1712-1734 / Harvested from Project Euclid
Let $(B(t))_{t \geq 0}$ be the linear Brownian motion starting at 0, and set $X_n (t) =(1/n!)\int_0^t(t-s)^s dB(s)$. Watanabe stated a law of the iterated logarithm for the process $(X_1(t))_{t \geq 0}$, among other things. This paper proposes an elementary proof of this fact, which can be extended to the general case $n\geq 1$. Next, we study the local asymptotic classes (upper and lower) of the $(n +1)$ -dimensional process $U_n =(B, X_1,\ldots,X_n)$ near zero and infinity, and the results obtained are extended to the case where $B$ is the $d$-dimensional Brownian motion.
Publié le : 1997-10-14
Classification:  Law of the iterated logarithm,  local asymptotic classes,  integral tests,  60J65,  60F15,  60G15,  60G17,  60J25
@article{1023481108,
     author = {Lachal, Aim\'e},
     title = {Local asymptotic classes for the successive primitives of Brownian
		 motion},
     journal = {Ann. Probab.},
     volume = {25},
     number = {4},
     year = {1997},
     pages = { 1712-1734},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1023481108}
}
Lachal, Aimé. Local asymptotic classes for the successive primitives of Brownian
		 motion. Ann. Probab., Tome 25 (1997) no. 4, pp.  1712-1734. http://gdmltest.u-ga.fr/item/1023481108/