For $n, k \in \mathbb{N}$ and $r > 0$ let $e_{n,r}(P_k)^r =
\inf 1/k \sum_{i=1}^k ||X_i - f(X_i)||^r$, where the infimum is taken over all
measurable maps $f : \mathbb{R}^d \to \mathbb{R}^d$ with $|f(\mathbb{R}^d)|
\leq n$ and $X_1, \dots, X_k$ are i.i.d. $\mathbb{R}^d$-valued random
variables. We analyse the asymptotic a.s. behaviour of the $n$th empirical
quantization error $e_{n,r}(P_k)$.
@article{1023481010,
author = {Graf, Siegfried and Luschgy, Harald},
title = {Rates of convergence for the empirical quantization
error},
journal = {Ann. Probab.},
volume = {30},
number = {1},
year = {2002},
pages = { 874-897},
language = {en},
url = {http://dml.mathdoc.fr/item/1023481010}
}
Graf, Siegfried; Luschgy, Harald. Rates of convergence for the empirical quantization
error. Ann. Probab., Tome 30 (2002) no. 1, pp. 874-897. http://gdmltest.u-ga.fr/item/1023481010/