Ornstein-Zernike theory for the Bernoulli bond percolation on $\mathbb{Z}^d$
Campanino, Massimo ; Ioffe, Dmitry
Ann. Probab., Tome 30 (2002) no. 1, p. 652-682 / Harvested from Project Euclid
We derive a precise Ornstein–Zernike asymptotic formula for the decay of the two-point function $\mathbb{P}_p (0 \leftrightarrow x)$ of the Bernoulli bond percolation on the integer lattice $\mathbb{Z}^d$ in any dimension $d \geq 2$, in any direction $x$ and for any subcritical value of $p < p_c (d)$.
Publié le : 2002-04-14
Classification:  percolation,  Ornstein-Zernike decay of connectivities,  multidimensional renewal,  renormalization,  local limit theorems,  60F15,  60K15,  60K35,  82A43
@article{1023481005,
     author = {Campanino, Massimo and Ioffe, Dmitry},
     title = {Ornstein-Zernike theory for the Bernoulli bond percolation on
			 $\mathbb{Z}^d$},
     journal = {Ann. Probab.},
     volume = {30},
     number = {1},
     year = {2002},
     pages = { 652-682},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1023481005}
}
Campanino, Massimo; Ioffe, Dmitry. Ornstein-Zernike theory for the Bernoulli bond percolation on
			 $\mathbb{Z}^d$. Ann. Probab., Tome 30 (2002) no. 1, pp.  652-682. http://gdmltest.u-ga.fr/item/1023481005/