Total variation asymptotics for sums of independent integer random variables
Barbour, A. D. ; Ćekanavićius, V.
Ann. Probab., Tome 30 (2002) no. 1, p. 509-545 / Harvested from Project Euclid
Let $W_n := \sum_{j=1}^n Z_j$ be a sum of independent integer-valued random variables. In this paper, we derive an asymptotic expansion for the probability $\mathbb{P}[W_n \in A]$ of an arbitrary subset $A \in \mathbb{Z}$. Our approximation improves upon the classical expansions by including an explicit, uniform error estimate, involving only easily computable properties of the distributions of the $Z_j:$ an appropriate number of moments and the total variation distance $d_{\mathrm{TV}}(\mathscr{L}(Z_j), \mathscr{L}(Z_j + 1))$. The proofs are based on Stein’s method for signed compound Poisson approximation.
Publié le : 2002-04-14
Classification:  compound Poisson,  Stein's method,  total variation distance,  Kolmogorov's problem,  60G50,  60F05,  62E20
@article{1023481001,
     author = {Barbour, A. D. and \'Cekanavi\'cius, V.},
     title = {Total variation asymptotics for sums of independent integer
			 random variables},
     journal = {Ann. Probab.},
     volume = {30},
     number = {1},
     year = {2002},
     pages = { 509-545},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1023481001}
}
Barbour, A. D.; Ćekanavićius, V. Total variation asymptotics for sums of independent integer
			 random variables. Ann. Probab., Tome 30 (2002) no. 1, pp.  509-545. http://gdmltest.u-ga.fr/item/1023481001/