Finite-dimensional approximation of the self-diffusion coefficient for the exclusion process
Landim, C. ; Olla, S. ; Varadhan, R. S.
Ann. Probab., Tome 30 (2002) no. 1, p. 483-508 / Harvested from Project Euclid
We show that for the symmetric simple exclusion process on $/mathbb{Z}^d$ the self-diffusion coefficient of a tagged particle is stable when approximated by simple exclusion processes on large periodic lattices. The proof depends on a similar stability property of the asymptotic variance of additive functionals of mean 0. This requires establishing a property for the Dirichlet space known as the Liouville-D property.
Publié le : 2002-04-14
Classification:  self-diffusion,  tagged particle,  exclusion process,  Liouville property,  60K35
@article{1023481000,
     author = {Landim, C. and Olla, S. and Varadhan, R. S.},
     title = {Finite-dimensional approximation of the self-diffusion
			 coefficient for the exclusion process},
     journal = {Ann. Probab.},
     volume = {30},
     number = {1},
     year = {2002},
     pages = { 483-508},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1023481000}
}
Landim, C.; Olla, S.; Varadhan, R. S. Finite-dimensional approximation of the self-diffusion
			 coefficient for the exclusion process. Ann. Probab., Tome 30 (2002) no. 1, pp.  483-508. http://gdmltest.u-ga.fr/item/1023481000/