Critical probabilities for site and bond percolation models
Grimmett, G. R. ; Stacey, A. M.
Ann. Probab., Tome 26 (1998) no. 1, p. 1788-1812 / Harvested from Project Euclid
.Any infinite graph $G = (V, E)$ has a site percolation critical probability $p_c^{\rm site}$ and a bond percolation critical probability $p_c^{\rm bond}$. The well-known weak inequality $p_c^{\rm site} \geq p_c^{\rm bond}$ is strengthened to strict inequality for a c c broad category of graphs $G$, including all the usual finite-dimensional lattices in two and more dimensions. The complementary inequality $p_c^{\rm site} \leq 1 - (1 - p_c^{\rm bond})^{\Delta - 1}$ is proved also, where $\Delta$ denotes the supremum of the vertex degrees of $G$.
Publié le : 1998-10-14
Classification:  Percolation,  enhancement,  critical probability,  60K35,  82B43
@article{1022855883,
     author = {Grimmett, G. R. and Stacey, A. M.},
     title = {Critical probabilities for site and bond percolation
		 models},
     journal = {Ann. Probab.},
     volume = {26},
     number = {1},
     year = {1998},
     pages = { 1788-1812},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1022855883}
}
Grimmett, G. R.; Stacey, A. M. Critical probabilities for site and bond percolation
		 models. Ann. Probab., Tome 26 (1998) no. 1, pp.  1788-1812. http://gdmltest.u-ga.fr/item/1022855883/