Entropy for translation-invariant random-cluster measures
Seppäläinen, Timo
Ann. Probab., Tome 26 (1998) no. 1, p. 1139-1178 / Harvested from Project Euclid
We study translation-invariant random-cluster measures with techniques from large deviation theory and convex analysis. In particular, we prove a large deviation principle with rate function given by a specific entropy, and a Dobrushin-Lanford-Ruelle variational principle that characterizes translation-invariant random-cluster measures as the solutions of the variational equation for free energy. Consequences of these theorems include inequalities for edge and cluster densities of translation-invariant random-cluster measures.
Publié le : 1998-07-14
Classification:  Relative entropy,  variational principle,  large deviations,  random-cluster measure,  60K35,  60F10,  82B20,  82B43
@article{1022855747,
     author = {Sepp\"al\"ainen, Timo},
     title = {Entropy for translation-invariant random-cluster
			 measures},
     journal = {Ann. Probab.},
     volume = {26},
     number = {1},
     year = {1998},
     pages = { 1139-1178},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1022855747}
}
Seppäläinen, Timo. Entropy for translation-invariant random-cluster
			 measures. Ann. Probab., Tome 26 (1998) no. 1, pp.  1139-1178. http://gdmltest.u-ga.fr/item/1022855747/