Théoràme central limite fonctionnel pour une marche au hasard en environnement aléatoire
Piau, Didier
Ann. Probab., Tome 26 (1998) no. 1, p. 1016-1040 / Harvested from Project Euclid
The simple random walk on a supercritical Galton–Watson tree is transient when the tree is infinite. Moreover, there exist regeneration times, that is, times when the walk crosses an edge for the first and the last time. We prove that the distance and the range of the walk satisfy functional central limit theorems under the annealed law GP. This result is a consequence of estimates of the law of the first regeneration time $\tau_R$. We show that there exist positive $c , c', \alpha$ and $\beta$ such that, for all $n \geq 1$, $$\exp (-cn^{\alpha}) \leq GP[\tau_R \geq \exp (-c' n^{\beta}).$
Publié le : 1998-07-14
Classification:  Trees,  Galton-Watson,  branching process,  random walk in random environment,  speed,  limit theorems,  regeneration,  60J80,  60J15
@article{1022855743,
     author = {Piau, Didier},
     title = {Th\'eor\`ame central limite fonctionnel pour une
			 marche au hasard en environnement al\'eatoire},
     journal = {Ann. Probab.},
     volume = {26},
     number = {1},
     year = {1998},
     pages = { 1016-1040},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1022855743}
}
Piau, Didier. Théoràme central limite fonctionnel pour une
			 marche au hasard en environnement aléatoire. Ann. Probab., Tome 26 (1998) no. 1, pp.  1016-1040. http://gdmltest.u-ga.fr/item/1022855743/