Crossings and occupation measures for a class of semimartingales
Perera, Gonzalo ; Wschebor, Mario
Ann. Probab., Tome 26 (1998) no. 1, p. 253-266 / Harvested from Project Euclid
We show that $$\frac{1}{\sqrt{\varepsilon}}{\int_{-\infty}^{\infty} f(u)k_{\varepsilon}N_{\tau}^{X_{\varepsilon}}(u)du - \int_0^{\tau} f(X_t)a_t dt}$$ converges in law (as a continuous process) to $c_{\psi} \int_0^{\tau}f(X_t)a_t dB_t$ where $X_t = \int_0^t a_s dW_s + \int_0^t b_x ds$, with $W$ a standard Brownian motion, $a$ and $b$ regular and adapted processes, $X_{\varepsilon}(t) = \int_{-\infty}^{\infty}(1/ \varepsilon) \psi ((t - u)/ \varepsilon)X_u du, \psi$ a smooth kernel, $N_t^g (u)$ the number of roots of the equation $g(s) = u, s \epsilon (o, t], k_{\varepsilon} = \sqrt{\pi \varepsilon /2/ \parallel \psi \parallel_2$, $f$ a smooth function, a standard Brownian motion independent of $W$ and $c_{\psi}$ constant depending only on $\psi$. .
Publié le : 1998-01-14
Classification:  Crossings,  local time,  occupation measure,  semimartingale,  smoothing of paths,  60F05,  60G44,  60J55
@article{1022855418,
     author = {Perera, Gonzalo and Wschebor, Mario},
     title = {Crossings and occupation measures for a class of
 semimartingales},
     journal = {Ann. Probab.},
     volume = {26},
     number = {1},
     year = {1998},
     pages = { 253-266},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1022855418}
}
Perera, Gonzalo; Wschebor, Mario. Crossings and occupation measures for a class of
 semimartingales. Ann. Probab., Tome 26 (1998) no. 1, pp.  253-266. http://gdmltest.u-ga.fr/item/1022855418/