The stochastic wave equation in two spatial dimensions
Dalang, Robert C. ; Frangos, N. E.
Ann. Probab., Tome 26 (1998) no. 1, p. 187-212 / Harvested from Project Euclid
We consider the wave equation in two spatial dimensions driven by space–time Gaussian noise that is white in time but has a nondegenerate spatial covariance. We give a necessary and sufficient integral condition on the covariance function of the noise for the solution to the linear form of the equation to be a real-valued stochastic process, rather than a distribution-valued random variable. When this condition is satisfied, we show that not only the linear form of the equation, but also nonlinear versions, have a real-valued process solution. We give stronger sufficient conditions on the spatial covariance for the solution of the linear equation to be continuous, and we provide an estimate of its modulus of continuity.
Publié le : 1998-01-14
Classification:  Stochastic wave equation,  Gaussian noise,  process solution,  60H15,  35R60,  35D10
@article{1022855416,
     author = {Dalang, Robert C. and Frangos, N. E.},
     title = {The stochastic wave equation in two spatial dimensions},
     journal = {Ann. Probab.},
     volume = {26},
     number = {1},
     year = {1998},
     pages = { 187-212},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1022855416}
}
Dalang, Robert C.; Frangos, N. E. The stochastic wave equation in two spatial dimensions. Ann. Probab., Tome 26 (1998) no. 1, pp.  187-212. http://gdmltest.u-ga.fr/item/1022855416/