Stochastic area for Brownian motion on the Sierpinski gasket
Hambly, B. M. ; Lyons, T. J.
Ann. Probab., Tome 26 (1998) no. 1, p. 132-148 / Harvested from Project Euclid
We construct a Lévy stochastic area for Brownian motion on the Sierpinski gasket. The standard approach via Itô integrals fails because this diffusion has sample paths which are far rougher than those of semimartingales. We thus provide an example demonstrating the restrictions of the semimartingale framework. As a consequence of the existence of the area one has a stochastic calculus and can solve stochastic differential equations driven by Brownian motion on the Sierpinski gasket.
Publié le : 1998-01-14
Classification:  Stochastic area,  differential equations,  fractals,  60J60,  60J65,  60J25
@article{1022855414,
     author = {Hambly, B. M. and Lyons, T. J.},
     title = {Stochastic area for Brownian motion on the Sierpinski
 gasket},
     journal = {Ann. Probab.},
     volume = {26},
     number = {1},
     year = {1998},
     pages = { 132-148},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1022855414}
}
Hambly, B. M.; Lyons, T. J. Stochastic area for Brownian motion on the Sierpinski
 gasket. Ann. Probab., Tome 26 (1998) no. 1, pp.  132-148. http://gdmltest.u-ga.fr/item/1022855414/