We derive upper bounds for the conditional moment $\mathbf{E} \{|
X|^{\varrho}|Y=y\}$ of a strictly $\alpha$-stable random vector (X,Y)
when $\alpha\neq 1$ and $\varrho\leq 2$ and prove weak convergences for the
conditional law $(X/u|Y= u)$ as $u \to \infty$ when $\alpha > 1$. As an
example of application, we derive a new result in crossing theory for
$\alpha$-stable processes.
@article{1022677455,
author = {Albin, J. M. P. and Leadbetter, M. R.},
title = {Asymptotic Behavior of Conditional Laws and Moments of
$\infty$-Stable Random Vectors, with Application to Upcrossing
Intensities},
journal = {Ann. Probab.},
volume = {27},
number = {1},
year = {1999},
pages = { 1468-1500},
language = {en},
url = {http://dml.mathdoc.fr/item/1022677455}
}
Albin, J. M. P.; Leadbetter, M. R. Asymptotic Behavior of Conditional Laws and Moments of
$\infty$-Stable Random Vectors, with Application to Upcrossing
Intensities. Ann. Probab., Tome 27 (1999) no. 1, pp. 1468-1500. http://gdmltest.u-ga.fr/item/1022677455/