Probabilistic Interpretation of Sticky Particle Model
Dermoune, Azzouz
Ann. Probab., Tome 27 (1999) no. 1, p. 1357-1367 / Harvested from Project Euclid
This work presents a construction of a solution for the nonlinear stochastic differential equation $X_t= X_0+ \int_0^t \mathbb{E}[u_0(X_0)|X_s]ds, t \geq 0$. The random variable $X_0$ with values in $\mathb{R}$ and the function $u_0$ are given. We denote by $P_t$ the probability distribution of $X_t$ and $u(x,t) = \mathbb{E}[u_0(X_0)|X_t= x]$. We prove that $(P_t,u(\cdot,t), t\geq 0)$ is a weak solution for a system of conservation laws arising in adhesion particle dynamics.
Publié le : 1999-07-14
Classification:  Weak solutions,  center of mass,  generalized variational principle,  60H10,  60H15,  60H30
@article{1022677451,
     author = {Dermoune, Azzouz},
     title = {Probabilistic Interpretation of Sticky Particle Model},
     journal = {Ann. Probab.},
     volume = {27},
     number = {1},
     year = {1999},
     pages = { 1357-1367},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1022677451}
}
Dermoune, Azzouz. Probabilistic Interpretation of Sticky Particle Model. Ann. Probab., Tome 27 (1999) no. 1, pp.  1357-1367. http://gdmltest.u-ga.fr/item/1022677451/