Asymptotic Distribution of Quadratic Forms
Götze, F. ; Tikhomirov, A. N.
Ann. Probab., Tome 27 (1999) no. 1, p. 1072-1098 / Harvested from Project Euclid
We consider quadratic forms Q_n = \sum_{1 \le j \neq k \le n} a_{jk}X_j X_k, where $X_j$ are i.i.d. random variables with finite third moment. We obtain optimal bounds for the Kolmogorov distance between the distribution of $Q_n$ and the distribution of the same quadratic forms with $X_j$ replaced by corresponding Gaussian random variables. These bounds are applied to Toeplitz and random matrices as well as to nonstationary AR(1) processes.
Publié le : 1999-04-15
Classification:  Independent random variables,  quadratic forms,  asymptotic distribution,  limit theorems,  Berry–Esseen bounds,  60F05
@article{1022677395,
     author = {G\"otze, F. and Tikhomirov, A. N.},
     title = {Asymptotic Distribution of Quadratic Forms},
     journal = {Ann. Probab.},
     volume = {27},
     number = {1},
     year = {1999},
     pages = { 1072-1098},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1022677395}
}
Götze, F.; Tikhomirov, A. N. Asymptotic Distribution of Quadratic Forms. Ann. Probab., Tome 27 (1999) no. 1, pp.  1072-1098. http://gdmltest.u-ga.fr/item/1022677395/