Crossing Estimates and Convergence of Dirichlet Functions Along Random Walk and Diffusion Paths
Ancona, Alano ; Lyons, Russell ; Peres, Yuval
Ann. Probab., Tome 27 (1999) no. 1, p. 970-989 / Harvested from Project Euclid
Let ${X _n}$ be a transient reversible Markov chain and let $f$ be a function on the state space with finite Dirichlet energy. We prove crossing inequalities for the process ${f (X _n)}_{n\geq 1}$ and show that it converges almost surely and in $L^2$. Analogous results are also established for reversible diffusions on Riemannian manifolds.
Publié le : 1999-04-15
Classification:  Dirichlet energy,  random walk,  almost sure convergence,  Markov chain,  diffusions,  manifolds,  crossing,  60J45,  31C25,  60F15
@article{1022677392,
     author = {Ancona, Alano and Lyons, Russell and Peres, Yuval},
     title = {Crossing Estimates and Convergence of Dirichlet Functions Along
		 Random Walk and Diffusion Paths},
     journal = {Ann. Probab.},
     volume = {27},
     number = {1},
     year = {1999},
     pages = { 970-989},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1022677392}
}
Ancona, Alano; Lyons, Russell; Peres, Yuval. Crossing Estimates and Convergence of Dirichlet Functions Along
		 Random Walk and Diffusion Paths. Ann. Probab., Tome 27 (1999) no. 1, pp.  970-989. http://gdmltest.u-ga.fr/item/1022677392/