Optimal Bounds in Non-Gaussian Limit Theorems for U-Statistics
Bentkus, V. ; Götze, F.
Ann. Probab., Tome 27 (1999) no. 1, p. 454-521 / Harvested from Project Euclid
Let $X,X_1,X_2,\ldots$ be i.i.d. random variables taking values in a measurable space $\mathscr{X}$. Let $\phi(x,y)$ and $\phi_1(x)$ denote measurable functions of the arguments $x,y\in\mathscr{X}$. Assuming that the kernel $\phi$ is symmetric and the $\mathbf{E}\phi(x,X)= 0$, for all $x$, and $\mathbf{E}\phi_1(X) = 0$, we consider $U$-statistics of type \[ T = N^{-1} \textstyle\sum\limits_{1\le j < k\le N} \phi(X_j,X_k) + N^{-1/2} \textstyle\sum\limits_{1\le j\le N}\phi_1(X_j). \]
Publié le : 1999-01-14
Classification:  $U$-statistics,  degenerate $U$-statistics,  von Mises statistics,  symmetric statistics,  central limit theorem,  convergence rates,  Berry-Esseen bounds,  Edgeworth expansions,  second order efficiency,  62E20,  60F05
@article{1022677269,
     author = {Bentkus, V. and G\"otze, F.},
     title = {Optimal Bounds in Non-Gaussian Limit Theorems for
		 U-Statistics},
     journal = {Ann. Probab.},
     volume = {27},
     number = {1},
     year = {1999},
     pages = { 454-521},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1022677269}
}
Bentkus, V.; Götze, F. Optimal Bounds in Non-Gaussian Limit Theorems for
		 U-Statistics. Ann. Probab., Tome 27 (1999) no. 1, pp.  454-521. http://gdmltest.u-ga.fr/item/1022677269/