Relaxation to Equilibrium of Conservative Dynamics. I: Zero-Range Processes
Janvresse, E. ; Landim, C. ; Quastel, J. ; Yau, H. T.
Ann. Probab., Tome 27 (1999) no. 1, p. 325-360 / Harvested from Project Euclid
Under mild assumptions we prove that for any local function $u$ the decay rate to equilibrium in the variance sense of zero range dynamics on $d$-dimensional integer lattice is $C_u t^{-d/2}+ o(t^{-d/2})$. The constant $C_u$ is computed explicitly.
Publié le : 1999-01-14
Classification:  Interacting particle system,  spectral gap,  relaxation to equilibrium,  60K35,  82A05
@article{1022677265,
     author = {Janvresse, E. and Landim, C. and Quastel, J. and Yau, H. T.},
     title = {Relaxation to Equilibrium of Conservative Dynamics. I: Zero-Range
		 Processes},
     journal = {Ann. Probab.},
     volume = {27},
     number = {1},
     year = {1999},
     pages = { 325-360},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1022677265}
}
Janvresse, E.; Landim, C.; Quastel, J.; Yau, H. T. Relaxation to Equilibrium of Conservative Dynamics. I: Zero-Range
		 Processes. Ann. Probab., Tome 27 (1999) no. 1, pp.  325-360. http://gdmltest.u-ga.fr/item/1022677265/