Under mild assumptions we prove that for any local function $u$
the decay rate to equilibrium in the variance sense of zero range dynamics on
$d$-dimensional integer lattice is $C_u t^{-d/2}+ o(t^{-d/2})$. The constant
$C_u$ is computed explicitly.
Publié le : 1999-01-14
Classification:
Interacting particle system,
spectral gap,
relaxation to equilibrium,
60K35,
82A05
@article{1022677265,
author = {Janvresse, E. and Landim, C. and Quastel, J. and Yau, H. T.},
title = {Relaxation to Equilibrium of Conservative Dynamics. I: Zero-Range
Processes},
journal = {Ann. Probab.},
volume = {27},
number = {1},
year = {1999},
pages = { 325-360},
language = {en},
url = {http://dml.mathdoc.fr/item/1022677265}
}
Janvresse, E.; Landim, C.; Quastel, J.; Yau, H. T. Relaxation to Equilibrium of Conservative Dynamics. I: Zero-Range
Processes. Ann. Probab., Tome 27 (1999) no. 1, pp. 325-360. http://gdmltest.u-ga.fr/item/1022677265/