Spatializing Random Measures: Doubly Indexed Processes and the Large Deviation Principle
Boucher, Christopher ; Ellis, Richard S. ; Turkington, Bruce
Ann. Probab., Tome 27 (1999) no. 1, p. 297-324 / Harvested from Project Euclid
The main theorem is the large deviation principle for the doubly indexed sequence of random measures \[ W_{r,q}(dx \times dy) \doteq \theta(dx) \otimes \textstyle\sum\limits_{k=1}^{2^r} 1_{D_{r,k}}(x) L_{q,k} (dy) \]
Publié le : 1999-01-14
Classification:  Large deviation principle,  doubly indexed processes,  random measures,  Sanov’s theorem,  turbulence,  60F10,  82B99
@article{1022677264,
     author = {Boucher, Christopher and Ellis, Richard S. and Turkington, Bruce},
     title = {Spatializing Random Measures: Doubly Indexed Processes and the
		 Large Deviation Principle},
     journal = {Ann. Probab.},
     volume = {27},
     number = {1},
     year = {1999},
     pages = { 297-324},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1022677264}
}
Boucher, Christopher; Ellis, Richard S.; Turkington, Bruce. Spatializing Random Measures: Doubly Indexed Processes and the
		 Large Deviation Principle. Ann. Probab., Tome 27 (1999) no. 1, pp.  297-324. http://gdmltest.u-ga.fr/item/1022677264/