The main theorem is the large deviation principle for the doubly
indexed sequence of random measures
\[ W_{r,q}(dx \times dy) \doteq \theta(dx) \otimes \textstyle\sum\limits_{k=1}^{2^r} 1_{D_{r,k}}(x) L_{q,k} (dy) \]
Publié le : 1999-01-14
Classification:
Large deviation principle,
doubly indexed processes,
random measures,
Sanov’s theorem,
turbulence,
60F10,
82B99
@article{1022677264,
author = {Boucher, Christopher and Ellis, Richard S. and Turkington, Bruce},
title = {Spatializing Random Measures: Doubly Indexed Processes and the
Large Deviation Principle},
journal = {Ann. Probab.},
volume = {27},
number = {1},
year = {1999},
pages = { 297-324},
language = {en},
url = {http://dml.mathdoc.fr/item/1022677264}
}
Boucher, Christopher; Ellis, Richard S.; Turkington, Bruce. Spatializing Random Measures: Doubly Indexed Processes and the
Large Deviation Principle. Ann. Probab., Tome 27 (1999) no. 1, pp. 297-324. http://gdmltest.u-ga.fr/item/1022677264/