Stochastic Bifurcation Models
Bass, Richard F. ; Burdzy, Krzysztof
Ann. Probab., Tome 27 (1999) no. 1, p. 50-108 / Harvested from Project Euclid
We study an ordinary differential equation controlled by a stochastic process. We present results on existence and uniqueness of solutions, on associated local times (Trotter and Ray–Knight theorems) and on time and direction of bifurcation. A relationship with Lipschitz approximations to Brownian paths is also discussed.
Publié le : 1999-01-14
Classification:  Brownian motion,  fractional Brownian motion,  differential equations,  stochastic differential equations,  local time,  Trotter theorem,  Ray–Knight theorem,  Lipschitz approximation,  bifurcation,  bifurcation time,  60J65,  60G17,  60H10
@article{1022677254,
     author = {Bass, Richard F. and Burdzy, Krzysztof},
     title = {Stochastic Bifurcation Models},
     journal = {Ann. Probab.},
     volume = {27},
     number = {1},
     year = {1999},
     pages = { 50-108},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1022677254}
}
Bass, Richard F.; Burdzy, Krzysztof. Stochastic Bifurcation Models. Ann. Probab., Tome 27 (1999) no. 1, pp.  50-108. http://gdmltest.u-ga.fr/item/1022677254/