@article{102259, author = {Jens Franke and Thomas Runst}, title = {Nonlinear perturbations of linear non-invertible boundary value problems in function spaces of type $B^s\_{p,q}$ and $F^s\_{p,q}$}, journal = {Czechoslovak Mathematical Journal}, volume = {38}, year = {1988}, pages = {623-641}, zbl = {0676.35031}, mrnumber = {962907}, language = {en}, url = {http://dml.mathdoc.fr/item/102259} }
Franke, Jens; Runst, Thomas. Nonlinear perturbations of linear non-invertible boundary value problems in function spaces of type $B^s_{p,q}$ and $F^s_{p,q}$. Czechoslovak Mathematical Journal, Tome 38 (1988) pp. 623-641. http://gdmltest.u-ga.fr/item/102259/
Estimates near the boundary for solution of elliptic partial differential equations satisfying general boundary conditions. I, Comm. Pure Appl. Math. 12 (1959), 623-727. (1959) | Article | MR 0125307
Regular elliptic boundary value problems in Besov and Triebel-Lizorkin spaces. The case $0 , Math. Nachr. (to appear).
| MR 1349041
On the spaces $F\sb {pq}\sp s$ of Triebel-Lizorkin type: Pointwise multipliers and spaces on domains, Math. Nachr. 125 (1986), 29-68. (1986)
| MR 0847350
On the admissibility of function spaces of type $B\sp s\sb {p,q}$ and $F\sp s\sb {p,q}$. Boundary value problems for non-linear partial differential equations, Analysis Math. 13 (1987), 3-27. (1987)
| Article
| MR 0893032
Solvability of Nonlinear Equations and Boundary Value Problems, Soc. Czechoslovak Math. Phys., Prague 1980. (1980)
| MR 0620638
Nonlinear Differential Equations, Elsevier, Amsterdam 1980. (1980)
| MR 0558764
On a theorem by Landesman and Lazer, Indiana Univ. Math. J. 23 (1974), 827-829. (1974)
| Article
| MR 0352687
| Zbl 0259.35036
Leray-Schauder theory without local convexity, Math. Ann. 141 (1960), 281 - 285. (1960)
| Article
| MR 0131150
| Zbl 0096.08001
Nonlinear perturbation of linear elliptic boundary value problems at resonance, J. Math. Mech. 19 (1970), 609-623. (1970)
| MR 0267269
Sur l'Alternative de Fredholm pour les opérateurs non-linéaires avec application aux problèmes aux limites, Ann. Scuola Norm. Sup. Pisa 23 (1969), 331 - 345. (1969)
| MR 0267430
Les méthodes directes en théorie des équations elliptiques, Academia, Prague 1967. (1967)
| MR 0227584
On the range of nonlinear operators with linear asymptotes which are not invertible, Comment. Math. Univ. Carolinae 14 (1973), 63 - 72. (1973)
| MR 0318995
The solvability of non-linear equations with odd operators, (Russian). Functionalnyi analys i prilož. 1 (1967), 66-73. (1967)
Vorlesungen über nichtlineare Operatorengleichungen, Teubner-Texte Math., Teubner, Leipzig, 1976. (1976)
| MR 0467414
| Zbl 0332.47026
Mapping properties of non-linear operators in spaces of type $B\sp s\sb {p,q}$ and $F\sp s\sb {p,q}$, Analysis Math. 12(1986), 313-346. (1986)
| Article
| MR 0877164
Spaces of Besov-Hardy-Sobolev Type, Teubner-Texte Math., Teubner, Leipzig, 1978. (1978)
| MR 0581907
| Zbl 0408.46024
Theory of Function Spaces, Akademische Verlagsgesellschaft Geest & Portig, Lepzig, 1983, und Birkhäuser, Boston, 1983. (1983)
| MR 0781540
| Zbl 0546.46028
On Besov-Hardy-Sobolev Spaces in domains and regular elliptic boundary value problems. The case $0 , Comm. Partial Differential Equations 3 (1978), 1083-1164. (1978)
| Article
| MR 0512083
| Zbl 0403.35034
Mapping properties of Non-linear Operators Generated by $\Phi (u)=\vert u\vert \sp{\rho }$ and by Holomorphic $\Phi (u)$ in Function Spaces of Besov-Hardy-Sobolev Type. Boundary Value Problems for Elliptic Differential Equations of Type $\Delta u=f(x)+\Phi (u)$, Math. Nachr. 117 (1984), 193-213. (1984)
| Article
| MR 0755303
A sharp sufficient condition for solution of a nonlinear elliptic boundary value problem, J. Differential Equations 8 (1970), 580-586. (1970)
| Article
| MR 0267267
| Zbl 0209.13003
Vorlesungen über nichtlineare Functionalanalysis II - Monotone Operatoren, - Teubner-Texte Math., Teubner, Leipzig, 1977. (1977)
| MR 0473928