@article{102257, author = {Bohum\'\i r Opic and Petr Gurka}, title = {$A\_r$-condition for two weight functions and compact imbeddings of weighted Sobolev spaces}, journal = {Czechoslovak Mathematical Journal}, volume = {38}, year = {1988}, pages = {611-617}, zbl = {0676.46029}, mrnumber = {962905}, language = {en}, url = {http://dml.mathdoc.fr/item/102257} }
Opic, Bohumír; Gurka, Petr. $A_r$-condition for two weight functions and compact imbeddings of weighted Sobolev spaces. Czechoslovak Mathematical Journal, Tome 38 (1988) pp. 611-617. http://gdmltest.u-ga.fr/item/102257/
On compact embedding theorems in weighted Sobolev spaces;, Czechoslovak Math. J., 29 (104) (1979), no. 4, 635-648, MR 81b : 46040. (1979) | MR 0548224 | Zbl 0432.46030
A note on a two-weighted Sobolev inequality;, Banach Center Publications, 27th semester, Approx. Theory and Function Spaces, February- May 1986 (to appear). (1986)
A remark on the conditions for complete continuity of an imbedding operator, (Russian); Vestnik Leningrad. Univ. Mat. Mekh. Astronom. 1982, vyp. 1, 118-123, MR 83f : 46035. (1982) | MR 0652070
Function spaces;, Academia Praha 1977. (1977) | MR 0482102
Imbedding and compactness theorems for Sobolev type spaces with weights I, II, (Russian); Mat. Sb. (N.S.) 108 (150), (1979), no. 3, 358-377, MR 80j : : 46054; 112 (154) (1980), no. 1 (5), 56-85, MR 82i : 46051. (1979) | MR 0530316
Sobolev spaces, (Russian), Izdatelstvo Leningradskogo Universiteta, Leningrad 1985. (1985) | Zbl 0692.46023
Compact imbedding of weighted Sobolev space defined on an unbounded domain I, II, Časopis Pěst. Mat. 113 (1988), 60-73; 113 (1988), 293-308. (1988) | MR 0930807
Necessary and sufficient conditions for compactness of an imbedding in weighted Sobolev spaces, Časopis Pěst. Mat. (to appear).