@article{102256, author = {Kamil John}, title = {Operators whose tensor powers are $\varepsilon$-$\pi$-continuous}, journal = {Czechoslovak Mathematical Journal}, volume = {38}, year = {1988}, pages = {602-610}, zbl = {0695.47015}, mrnumber = {962904}, language = {en}, url = {http://dml.mathdoc.fr/item/102256} }
John, Kamil. Operators whose tensor powers are $\varepsilon$-$\pi$-continuous. Czechoslovak Mathematical Journal, Tome 38 (1988) pp. 602-610. http://gdmltest.u-ga.fr/item/102256/
Inequalities of Bernstein-Jackson-type and the degree of compactness of operators in Banach spaces, Ann. Inst. Fourier, Grenoble 35, 3 (1985), 79-118. (1985) | Article | MR 0810669 | Zbl 0564.47009
Some contributions to the theory of s-numbers, Comment. Math. Prace Mat. 21 (1978), 65-76. (1978) | MR 0504153 | Zbl 0402.47026
Introduction to the theory of linear nonselfadjoint operators, American Math. Soc., Providence, R.I. 1969. (1969) | MR 0246142 | Zbl 0181.13504
Locally convex spaces, Stuttgart: Teubner 1981. (1981) | MR 0632257 | Zbl 0466.46001
Tensor products and nuclearity, in: Proceedings on Banach space theory and its applications, pp. 124-129, Lecture Notes in Math. 991, Springer Berlin, Heidelberg, New York 1983. (1983) | MR 0714179 | Zbl 0518.46054
Tensor products of several spaces and nuclearity, Math. Ann. 269 (1984), 333 - 356. (1984) | Article | MR 0761310 | Zbl 0537.46057
Tensor powers of operators and nuclearity, Math. Nachr. 129 (1986), 115-121. (1986) | Article | MR 0864627 | Zbl 0609.46041
Operator ideals, Berlin: Deutscher Verlag der Wissenschaften 1978. (1978) | MR 0519680 | Zbl 0405.47027
Distributions of eigenvalues and nuclearity, Banach Centre Publications 8, Math. Ann. 247 (1980), 169-178. (1980) | MR 0568206
Weyl numbers and eigenvalues of operators in Banach spaces, Math. Ann. 247 (1980), 149-168. (1980) | Article | MR 0568205 | Zbl 0428.47027
Counterexamples to a conjecture of Grothendieck, Acta Math. 151 (1983), 181-208. (1983) | Article | MR 0723009 | Zbl 0542.46038
The essential spectral radius and the Riesz part of spectrum, in: Functions, Series, Operators (Proc. Internat. Conf., Budapest 1980), Colloq. Math. Soc. János Bolyai, vol. 35, North-Holland, Amsterdam 1983, 1275-1289. (1980) | MR 0751086