A strong convergence in $L^p$ and upper $q$-continuous operators
Haščák, Alexander
Czechoslovak Mathematical Journal, Tome 38 (1988), p. 420-424 / Harvested from Czech Digital Mathematics Library
Publié le : 1988-01-01
Classification:  46E30,  47H99
@article{102237,
     author = {Alexander Ha\v s\v c\'ak},
     title = {A strong convergence in $L^p$ and upper $q$-continuous operators},
     journal = {Czechoslovak Mathematical Journal},
     volume = {38},
     year = {1988},
     pages = {420-424},
     zbl = {0677.46018},
     mrnumber = {950295},
     language = {en},
     url = {http://dml.mathdoc.fr/item/102237}
}
Haščák, Alexander. A strong convergence in $L^p$ and upper $q$-continuous operators. Czechoslovak Mathematical Journal, Tome 38 (1988) pp. 420-424. http://gdmltest.u-ga.fr/item/102237/

S. Banach S. Saks Sur la convergence forte dans les champs $L\sp{p}$, Studia Math., 2 (1930),. 51-57. (1930)

A. Haščák Fixed Point Theorems for Multivalued Mappings, Czech. Math. J,, 35 {110} 1985, 533-542. (1985) | MR 0809039

A. Haščák Integral Equivalence of Multivalued Differential Systems II, Colloquia Math. Soc. J. Bolyai 47, Differential Equations: Qualitative Theory, Szeged (Hungary), 1984. (1984) | MR 0872343

S. Mazur Über konvexe Mengen in linear normierten Räumen, Studia Math., 5 (1933), 70-84. (1933)

F. Riesz В. Sz.-Nagy Leçons d'analyse fonctionnelle, Budapest 1972. (1972)

K. Yosida Functional Analysis, Springer-Verlag, ВегИп-Heidelberg-New York, 1966. (1966)