@article{102234, author = {Ladislav Spi\v siak and Peter Vojt\'a\v s}, title = {Dependences between definitions of finiteness}, journal = {Czechoslovak Mathematical Journal}, volume = {38}, year = {1988}, pages = {389-397}, zbl = {0667.03040}, mrnumber = {950292}, language = {en}, url = {http://dml.mathdoc.fr/item/102234} }
Spišiak, Ladislav; Vojtáš, Peter. Dependences between definitions of finiteness. Czechoslovak Mathematical Journal, Tome 38 (1988) pp. 389-397. http://gdmltest.u-ga.fr/item/102234/
Existence of bases implies the axiom of choice, In J. E. Baumgartner, D. A. Martin, S. Shelah editors. Axiom. Set Theory. Contemporary Mathematics 31 (1984) 31 - 33. (1984) | Article | MR 0763890 | Zbl 0557.03030
Cardinals m such that 2m = m, Proc. Amer. Math. Soc. 26 (1970) 487-490. (1970) | MR 0268034
Cardinal addition and the Axiom of Choice, Bull. Amer. Math. Soc. 80 (1974) 584-586. (1974) | Article | MR 0329890
Eine Bemerkung zum Auswahlaxiom, Časopis Pěst. Mat. 93 (1968), 30-31. (1968) | MR 0233706 | Zbl 0167.27402
The Axiom of Choice, Studies in Logic and the Foundation of Mathematics 75, North Holland, Amsterdam 1973. (1973) | MR 0396271 | Zbl 0259.02052
Applications of the $\Theta$-model, Bull. Acad. Polon. Sci. 16 (1966) 351-355. (1966) | MR 0228337
The independence of various definitions of finiteness, Fund. Math. XLVI (1958) 1-13. (1958) | MR 0098671 | Zbl 0089.00702
Basic Set Theory. $\Omega$ Perspectives in Mathematical Logic, Springer-Verlag 1979. (1979) | MR 0533962
Surrealistic landscape with figures (a survey of recent results in set theory), Periodica Math. Hungarica 10 (1979) 109-175. (1979) | Article | MR 0539225
An independence result concerning the Axiom of Choice, Ann. Math. Logic 8(1975) 1-184. (1975) | Article | MR 0366668 | Zbl 0306.02060
A model of ZF in which the Dedekind cardinals constitute a natural nonstandard model of Arithmetic, To appear.
Cardinal and ordinal numbers, PWN, Warszawa 1958. (1958) | MR 0095787 | Zbl 0083.26803
Definitions of finiteness, To appear.
Sur quelques théorèmes qui équivalent a l'axiome du choix, Fund. Math. 5 (1924) 147-154. (1924)
Sur les ensembles finis, Fund. Math. 6 (1924) 45-95. (1924)
Classes of Dedekind finite cardinals, Fund. Math. To appear. | MR 0469760 | Zbl 0292.02049