@article{102202, author = {Eduard Feireisl}, title = {On the existence of periodic solutions of a semilinear wave equation with a superlinear forcing term}, journal = {Czechoslovak Mathematical Journal}, volume = {38}, year = {1988}, pages = {78-87}, zbl = {0665.35050}, mrnumber = {925942}, language = {en}, url = {http://dml.mathdoc.fr/item/102202} }
Feireisl, Eduard. On the existence of periodic solutions of a semilinear wave equation with a superlinear forcing term. Czechoslovak Mathematical Journal, Tome 38 (1988) pp. 78-87. http://gdmltest.u-ga.fr/item/102202/
Forced vibrations of superquadratic Hamiltonian systems, Preprint, Université Paris VI, 1981. (1981) | MR 0621969
Periodic solutions of a nonlinear wave equation, Proc. Roy. Soc. Edinburgh Sect. A., 85 (1980), 313-320. (1980) | MR 0574025 | Zbl 0438.35044
Quelques méthodes de resolution des problèmes aux limites non linéaires, Dunod,Gauthier-willars, Paris (1969). (1969) | MR 0259693 | Zbl 0189.40603
Free vibrations for the equation $u\sb{tt}-u\sb{xx}+f(u)=0$ with $f$ sublinear, Proc. of Equadiff 5 (Bratislava, 1981), Teubner-Texte zur Mathematik, Band 47, 228-230. (1981) | MR 0715981
Critical point theory and the minimax principle, Proc. Sympos. Pure Math. 15 (1970), 185-212. (1970) | MR 0264712 | Zbl 0212.28902
Large amplitude time periodic solutions of a semilinear wave equation, Comm. Pure. Appl. Math. 37 (1984), 189-206. (1984) | Article | MR 0733716 | Zbl 0522.35065
Infinitely many periodic solutions for the equation $u\sb {tt}-u\sb {xx}±\vert u\vert \sp {s-1}u=f(x,t)$, Proc. Japan. Acad. 61 (1985), Ser. A, 70-73. (1985) | MR 0796470