Moment asymptotics for the continuous parabolic Anderson model
Gärtner, Jürgen ; König, Wolfgang
Ann. Appl. Probab., Tome 10 (2000) no. 2, p. 192-217 / Harvested from Project Euclid
We consider the parabolic Anderson problem $\partial_{t}u = \kappa\Delta u + \xi(x)u$ on $\mathbb{R}_+ \times \mathbb{R}^d$ with initial condition $u(0, x) = 1$. Here $\xi(\cdot)$ is a random shift-invariant potential having high $\delta$-like peaks on small islands. We express the second-order asymptotics of the $p$th moment $(p \in [1, \infty))$ of $u(t,0)$ as $t \to \infty$ in terms of a variational formula involving an asymptotic description of the rescaled shapes of these peaks via their cumulant generating function. This includes Gaussian potentials and high Poisson clouds.
Publié le : 2000-02-14
Classification:  Parabolic Anderson problem,  random medium,  large deviations,  moment asymptotics,  heat equation with random potential,  60H25,  82C44,  60F10,  35B40
@article{1019737669,
     author = {G\"artner, J\"urgen and K\"onig, Wolfgang},
     title = {Moment asymptotics for the continuous parabolic Anderson
		 model},
     journal = {Ann. Appl. Probab.},
     volume = {10},
     number = {2},
     year = {2000},
     pages = { 192-217},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1019737669}
}
Gärtner, Jürgen; König, Wolfgang. Moment asymptotics for the continuous parabolic Anderson
		 model. Ann. Appl. Probab., Tome 10 (2000) no. 2, pp.  192-217. http://gdmltest.u-ga.fr/item/1019737669/