A transition function expansion for a diffusion model with selection
Barbour, A. D. ; Ethier, S. N. ; Griffiths, R. C.
Ann. Appl. Probab., Tome 10 (2000) no. 2, p. 123-162 / Harvested from Project Euclid
Using duality, an expansion is found for the transition function of the reversible $K$-allele diffusion model in population genetics. In the neutral case, the expansion is explicit but already known. When selection is present, it depends on the distribution at time $t$ of a specified $K$-type birth-and-death process starting at “infinity.” The latter process is constructed by means of a coupling argument and characterized as the Ray process corresponding to the Ray–Knight compactification of the $K$-dimensional nonnegative-integer lattice.
Publié le : 2000-02-14
Classification:  Finite-dimensional diffusion process,  population genetics,  duality,  reversibility,  multitype birth-and-death process,  coupling,  Ray-Knight compactification,  60J35,  60J60,  60J27,  92D10
@article{1019737667,
     author = {Barbour, A. D. and Ethier, S. N. and Griffiths, R. C.},
     title = {A transition function expansion for a diffusion model with
		 selection},
     journal = {Ann. Appl. Probab.},
     volume = {10},
     number = {2},
     year = {2000},
     pages = { 123-162},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1019737667}
}
Barbour, A. D.; Ethier, S. N.; Griffiths, R. C. A transition function expansion for a diffusion model with
		 selection. Ann. Appl. Probab., Tome 10 (2000) no. 2, pp.  123-162. http://gdmltest.u-ga.fr/item/1019737667/