A model for long memory conditional heteroscedasticity
Giraitis, Liudas ; Robinson, Peter M. ; Surgailis, Donatas
Ann. Appl. Probab., Tome 10 (2000) no. 2, p. 1002-1024 / Harvested from Project Euclid
or a particular conditionally heteroscedastic nonlinear (ARCH) process for which the conditional variance of the observable sequence $r_t$ is the square of an inhomogeneous linear combination of $r_s, s < t$, we give conditions under which, for integers $l \geq 2, r_t^l$ has long memory autocorrelation and normalized partial sums of $r_t^l$ converge to fractional Brownian motion.
Publié le : 2000-08-14
Classification:  ARCH processes,  long memory,  Volterra series,  diagrams,  central limit theorem,  fractioinal Brownian motion,  62M10,  60G18
@article{1019487516,
     author = {Giraitis, Liudas and Robinson, Peter M. and Surgailis, Donatas},
     title = {A model for long memory conditional heteroscedasticity},
     journal = {Ann. Appl. Probab.},
     volume = {10},
     number = {2},
     year = {2000},
     pages = { 1002-1024},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1019487516}
}
Giraitis, Liudas; Robinson, Peter M.; Surgailis, Donatas. A model for long memory conditional heteroscedasticity. Ann. Appl. Probab., Tome 10 (2000) no. 2, pp.  1002-1024. http://gdmltest.u-ga.fr/item/1019487516/