A Ray-Knight theorem for symmetric Markov processes
Eisenbaum, Nathalie ; Kaspi, Haya ; Marcus, Michael B. ; Rosen, Jay ; Shi, Zhan
Ann. Probab., Tome 28 (2000) no. 1, p. 1781-1796 / Harvested from Project Euclid
Let $X$ be a strongly symmetric recurrent Markov process with state space $S$ and let $L_t^x$ denote the local time of $X$ at $X \in S$. For a fixed element 0 in the state space S, let $$ \tau(t) := \inf \{s: L^0_s > t \}. $$ ¶ The 0-potential density, $u_{0}(x, y)$, of the process $X$ killed at $T_0 = \inf \{s:X_s =0\}$ is symmetric and positive definite. Let $\eta = \{\eta_x; x \in S \}$ be a mean-zero Gaussian process with covariance ¶ $$ E_\eta (\eta_x \eta_y ) = u_{\{0\}}(x, y). $$ The main result of this paper is the following generalization of the classical second Ray–Knight theorem: for any $b \in R$ and $t > 0$ $$ \{L_{\tau(t)} + 1/2 (\eta_x + b)^2; x \in S \} = \{ 1/2 ( \eta_x + \sqrt{2+ b^2})^2 ; x \in S \} \text{ in law}. $$ ¶ A version of this theorem is also given when $X$ is transient.
Publié le : 2000-10-14
Classification:  Local time,  Markovprocesses,  Ray –Knight theorem,  60J55
@article{1019160507,
     author = {Eisenbaum, Nathalie and Kaspi, Haya and Marcus, Michael B. and Rosen, Jay and Shi, Zhan},
     title = {A Ray-Knight theorem for symmetric Markov processes},
     journal = {Ann. Probab.},
     volume = {28},
     number = {1},
     year = {2000},
     pages = { 1781-1796},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1019160507}
}
Eisenbaum, Nathalie; Kaspi, Haya; Marcus, Michael B.; Rosen, Jay; Shi, Zhan. A Ray-Knight theorem for symmetric Markov processes. Ann. Probab., Tome 28 (2000) no. 1, pp.  1781-1796. http://gdmltest.u-ga.fr/item/1019160507/