Limits of logarithmic combinatorial structures
Arratia, R. ; Barbour, A. D. ; Tavaré, S.
Ann. Probab., Tome 28 (2000) no. 1, p. 1620-1644 / Harvested from Project Euclid
Under very mild conditions, we prove that the limiting behavior of the component counts in a decomposable logarithmic combinatorial structure conforms to a single, unified pattern, which includes functional central limit theorems, Erdös-Turán laws, Poisson–Dirichlet limits for the large components and Poisson approximation in total variation for the total number ofcomponents. Our approach is entirely probabilistic, and the conditions can readily be verified in practice.
Publié le : 2000-10-14
Classification:  20B25
@article{1019160500,
     author = {Arratia, R. and Barbour, A. D. and Tavar\'e, S.},
     title = {Limits of logarithmic combinatorial structures},
     journal = {Ann. Probab.},
     volume = {28},
     number = {1},
     year = {2000},
     pages = { 1620-1644},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1019160500}
}
Arratia, R.; Barbour, A. D.; Tavaré, S. Limits of logarithmic combinatorial structures. Ann. Probab., Tome 28 (2000) no. 1, pp.  1620-1644. http://gdmltest.u-ga.fr/item/1019160500/