Strong approximation of quantile processes by iterated Kiefer processes
Deheuvels, Paul
Ann. Probab., Tome 28 (2000) no. 1, p. 909-945 / Harvested from Project Euclid
The notion of a $k$th iterated Kiefer process $\mathscr{K}(v,t;k)$ for $k \in \mathbb{N}$ and $v, t \in \mathbb{R}$ is introduced.We show that the uniform quantile process $\beta_n(t)$ may be approximated on [0,1] by $n^{-1/2} \mathscr{K}(n,t;k)$, at an optimal uniform almost sure rate of $O(n^{-1/2 + 1/2^{k+1}+o(1)})$ for each $k \in \mathbb{N}$. Our arguments are based in part on a new functional limit law, of independent interest, for the increments of the empirical process. Applications include an extended version of the uniform Bahadur–Kiefer representation, together with strong limit theorems for nonparametric functional estimators.
Publié le : 2000-04-14
Classification:  Empirical processes,  quantile processes,  order statistics,  law of the iterated logarithm,  almost sure convergence,  strong laws,  strong invariance principles,  strong approximation,  Kiefer processes,  Wiener process,  iterated Wiener process,  iterated Gaussian processes,  Bahadur–Kiefer-type theorems,  60F05,  60F15,  60G15,  62G30
@article{1019160265,
     author = {Deheuvels, Paul},
     title = {Strong approximation of quantile processes by iterated Kiefer
		 processes},
     journal = {Ann. Probab.},
     volume = {28},
     number = {1},
     year = {2000},
     pages = { 909-945},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1019160265}
}
Deheuvels, Paul. Strong approximation of quantile processes by iterated Kiefer
		 processes. Ann. Probab., Tome 28 (2000) no. 1, pp.  909-945. http://gdmltest.u-ga.fr/item/1019160265/