The maximum of the periodogram for a heavy-tailed sequence
Mikosch, Thomas ; Resnick, Sidney ; Samorodnitsky, Gennady
Ann. Probab., Tome 28 (2000) no. 1, p. 885-908 / Harvested from Project Euclid
We consider the maximum of the periodogram based on an infinite variance heavy-tailed sequence. For $\alpha < 1$ we show that the maxima constitute a weakly convergent sequence and find its limiting distribution. For $1 \leq \alpha < 2$ we show that the sequence of the maxima is not tight and find a normalization that makes it tight.
Publié le : 2000-04-14
Classification:  Periodogram,  discrete Fourier transform,  stable random variable,  stable process,  stochastic integral,  infinite variance,  linear process,  point process convergence,  62M15,  60F05,  60G10,  60G55.
@article{1019160264,
     author = {Mikosch, Thomas and Resnick, Sidney and Samorodnitsky, Gennady},
     title = {The maximum of the periodogram for a heavy-tailed sequence},
     journal = {Ann. Probab.},
     volume = {28},
     number = {1},
     year = {2000},
     pages = { 885-908},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1019160264}
}
Mikosch, Thomas; Resnick, Sidney; Samorodnitsky, Gennady. The maximum of the periodogram for a heavy-tailed sequence. Ann. Probab., Tome 28 (2000) no. 1, pp.  885-908. http://gdmltest.u-ga.fr/item/1019160264/