Generalized variance and exponential families
Hassairi, Abdelhamid
Ann. Statist., Tome 27 (1999) no. 4, p. 374-385 / Harvested from Project Euclid
Let $\mu$ be a positive measure on $\mathbb{R}^d$ and let $F(\mu) = \{P(\theta,\mu); \theta \in \Theta\}$ be the natural exponential family generated by $\mu$. The aim of this paper is to show that if $\mu$ is infinitely divisible then the generalized variance of $\mu$, .i.e., the determinant of the covariance operator of $P(\theta,\mu)$, is the Laplace transform of some positive measure $\rho(\mu)$ on $mathbb{R}^d$. We then investigate the effect of the transformation $\mu \to \rho(\mu)$ and its implications for the skewness vector and the conjugate prior distribution families of $F(\mu)$. .
Publié le : 1999-03-14
Classification:  Natural exponential family,  variance function,  generalized variance,  skewness vector.,  62E10,  62H05
@article{1018031116,
     author = {Hassairi, Abdelhamid},
     title = {Generalized variance and exponential families},
     journal = {Ann. Statist.},
     volume = {27},
     number = {4},
     year = {1999},
     pages = { 374-385},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1018031116}
}
Hassairi, Abdelhamid. Generalized variance and exponential families. Ann. Statist., Tome 27 (1999) no. 4, pp.  374-385. http://gdmltest.u-ga.fr/item/1018031116/