Binomial mixtures: geometric estimation of the mixing distribution
Wood, G. R.
Ann. Statist., Tome 27 (1999) no. 4, p. 1706-1721 / Harvested from Project Euclid
Given a mixture of binomial distributions, how do we estimate the unknown mixing distribution? We build on earlier work of Lindsay and further elucidate the geometry underlying this question, exploring the approximating role played by cyclic polytopes. Convergence of a resulting maximum likelihood fitting algorithm is proved and numerical examples given; problems over the lack of identifiability of the mixing distribution in part disappear.
Publié le : 1999-10-14
Classification:  Binomial,  mixture,  mixing distribution,  geometry,  moment curve,  cyclic polytope,  nearest point,  least squares,  weighted least squares,  maximum likelihood,  Kullback-Leibler distance,  62G99,  62P15,  52B12
@article{1017939148,
     author = {Wood, G. R.},
     title = {Binomial mixtures: geometric estimation of the mixing
			 distribution},
     journal = {Ann. Statist.},
     volume = {27},
     number = {4},
     year = {1999},
     pages = { 1706-1721},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1017939148}
}
Wood, G. R. Binomial mixtures: geometric estimation of the mixing
			 distribution. Ann. Statist., Tome 27 (1999) no. 4, pp.  1706-1721. http://gdmltest.u-ga.fr/item/1017939148/