Optimal convergence rates for Good's nonparametric maximum likelihood density estimator
Eggermont, P. P. B. ; LaRiccia, V. N.
Ann. Statist., Tome 27 (1999) no. 4, p. 1600-1615 / Harvested from Project Euclid
We study maximum penalized likelihood density estimation using the first roughness penalty functional of Good. We prove a simple pointwise comparison result with a kernel estimator based on the two-sided exponential kernel. This leads to $L^1$ convergence results similar to those for kernel estimators. We also prove Hellinger distance bounds for the roughness penalized estimator.
Publié le : 1999-10-14
Classification:  Nonparametric density estimation,  maximum likelihood,  roughness penalization,  Hellinger distance,  62G07
@article{1017939143,
     author = {Eggermont, P. P. B. and LaRiccia, V. N.},
     title = {Optimal convergence rates for Good's nonparametric maximum
			 likelihood density estimator},
     journal = {Ann. Statist.},
     volume = {27},
     number = {4},
     year = {1999},
     pages = { 1600-1615},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1017939143}
}
Eggermont, P. P. B.; LaRiccia, V. N. Optimal convergence rates for Good's nonparametric maximum
			 likelihood density estimator. Ann. Statist., Tome 27 (1999) no. 4, pp.  1600-1615. http://gdmltest.u-ga.fr/item/1017939143/