Tests of goodness of fit based on the $L_2$-Wasserstein distance
del Barrio, Eustasio ; Cuesta-Albertos, Juan A. ; Matrán, Carlos ; Rodríguez-Rodríguez, Jes{\'u}s M.
Ann. Statist., Tome 27 (1999) no. 4, p. 1230-1239 / Harvested from Project Euclid
We consider the Wasserstein distance between a sample distribution and the set of normal distributions as a measure of nonnormality. By considering the standardized version of this distance we obtain a version of Shapiro–Wilk’s test of normality. The asymptotic behavior of the statistic is studied using approximations of the quantile process by Brownian bridges. This method differs from the “ad hoc” method of de Wet and Venter and permits a similar analysis for testing other location scale families.
Publié le : 1999-08-14
Classification:  Wasserstein distance,  correlation test,  Shapiro-Wilk,  goodness of fit,  test of normality,  quantile process,  Brownian bridge,  convergence of integrals,  62F05,  62E20,  60F25
@article{1017938923,
     author = {del Barrio, Eustasio and Cuesta-Albertos, Juan A. and Matr\'an, Carlos and Rodr\'\i guez-Rodr\'\i guez, Jes{\'u}s M.},
     title = {Tests of goodness of fit based on the $L\_2$-Wasserstein
			 distance},
     journal = {Ann. Statist.},
     volume = {27},
     number = {4},
     year = {1999},
     pages = { 1230-1239},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1017938923}
}
del Barrio, Eustasio; Cuesta-Albertos, Juan A.; Matrán, Carlos; Rodríguez-Rodríguez, Jes{\'u}s M. Tests of goodness of fit based on the $L_2$-Wasserstein
			 distance. Ann. Statist., Tome 27 (1999) no. 4, pp.  1230-1239. http://gdmltest.u-ga.fr/item/1017938923/