Polynomial Convergence Rates of Markov Chains
Jarner, Søren F. ; Roberts, Gareth O.
Ann. Appl. Probab., Tome 12 (2002) no. 1, p. 224-247 / Harvested from Project Euclid
In this paper we consider Foster–Liapounov-type drift conditions for Markov chains which imply polynomial rate convergence to stationarity in appropriate V-norms. We also show how these results can be used to prove central limit theorems for functions of the Markov chain. We consider two examples concerning random walks on the half line and the independence sampler.
Publié le : 2002-02-14
Classification:  Markov chains,  Foster-Liapounov drift conditiosn,  polynomial convergence,  central limit theorems,  independence sampler,  60J05,  60J10
@article{1015961162,
     author = {Jarner, S\o ren F. and Roberts, Gareth O.},
     title = {Polynomial Convergence Rates of Markov Chains},
     journal = {Ann. Appl. Probab.},
     volume = {12},
     number = {1},
     year = {2002},
     pages = { 224-247},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1015961162}
}
Jarner, Søren F.; Roberts, Gareth O. Polynomial Convergence Rates of Markov Chains. Ann. Appl. Probab., Tome 12 (2002) no. 1, pp.  224-247. http://gdmltest.u-ga.fr/item/1015961162/