Some new results for Dirichlet priors
Cifarelli, Donato Michele ; Melilli, Eugenio
Ann. Statist., Tome 28 (2000) no. 3, p. 1390-1413 / Harvested from Project Euclid
Let p be a random probability measure chosen by a Dirichlet process whose parameter a is a finite measure with support contained in $[0, +\infty)$ and suppose that $V = \int x^2p(dx)-[\int xp(dx)]^2$ is a (finite)random variable. This paper deals with the distribution of $V$, which is given in a rather general case. A simple application to Bayesian bootstrap is also illustrated.
Publié le : 2000-10-14
Classification:  Dirichlet process,  distribution of the variance,  hypergeometric functions,  62G99,  62E15
@article{1015957399,
     author = {Cifarelli, Donato Michele and Melilli, Eugenio},
     title = {Some new results for Dirichlet priors},
     journal = {Ann. Statist.},
     volume = {28},
     number = {3},
     year = {2000},
     pages = { 1390-1413},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1015957399}
}
Cifarelli, Donato Michele; Melilli, Eugenio. Some new results for Dirichlet priors. Ann. Statist., Tome 28 (2000) no. 3, pp.  1390-1413. http://gdmltest.u-ga.fr/item/1015957399/