Asymptotics for lasso-type estimators
Knight, Keith ; Fu, Wenjiang
Ann. Statist., Tome 28 (2000) no. 3, p. 1356-1378 / Harvested from Project Euclid
We consider the asymptotic behavior ofregression estimators that minimize the residual sum of squares plus a penalty proportional to $\sum|\beta_j|^{\gamma}$. for some $\gamma > 0$. These estimators include the Lasso as a special case when $\gamma = 1$. Under appropriate conditions, we show that the limiting distributions can have positive probability mass at 0 when the true value of the parameter is 0.We also consider asymptotics for “nearly singular” designs.
Publié le : 2000-10-14
Classification:  Penalized regression,  Lasso,  shrinkage estimation,  epi-convergence in distribution,  62J05,  62J07,  62E20,  60F05
@article{1015957397,
     author = {Knight, Keith and Fu, Wenjiang},
     title = {Asymptotics for lasso-type estimators},
     journal = {Ann. Statist.},
     volume = {28},
     number = {3},
     year = {2000},
     pages = { 1356-1378},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1015957397}
}
Knight, Keith; Fu, Wenjiang. Asymptotics for lasso-type estimators. Ann. Statist., Tome 28 (2000) no. 3, pp.  1356-1378. http://gdmltest.u-ga.fr/item/1015957397/