On the asymptotics of constrained local $M$-estimators
Shapiro, Alexander
Ann. Statist., Tome 28 (2000) no. 3, p. 948-960 / Harvested from Project Euclid
We discuss in this paper asymptotics of locally optimal solutions of maximum likelihood and,more generally, $M$-estimation procedures in cases where the true value of the parameter vector lies on the boundary of the parameter set $S$.We give a counterexample showing that regularity of $S$ in the sense of Clarke is not sufficient for asymptotic equivalence of $\sqrt{n}$-consistent locally optimal $M$-estimators.We argue further that stronger properties, such as so-called near convexity or prox-regularity of $S$ are required in order to ensure that any two $\sqrt{n}$-consistent locally optimal $M$-estimators have the same asymptotics.
Publié le : 2000-05-14
Classification:  Maximum likelihood,  contrained $M$-estimation,  asymptotic distribution,  tangent cones,  Clarke regularity,  prox-regularity,  metric projection,  62F12
@article{1015952006,
     author = {Shapiro, Alexander},
     title = {On the asymptotics of constrained local $M$-estimators},
     journal = {Ann. Statist.},
     volume = {28},
     number = {3},
     year = {2000},
     pages = { 948-960},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1015952006}
}
Shapiro, Alexander. On the asymptotics of constrained local $M$-estimators. Ann. Statist., Tome 28 (2000) no. 3, pp.  948-960. http://gdmltest.u-ga.fr/item/1015952006/