Maximum likelihood estimation of smooth monotone and unimodal densities
Eggermont, P. P. B. ; LaRiccia, V. N.
Ann. Statist., Tome 28 (2000) no. 3, p. 922-947 / Harvested from Project Euclid
We study the nonparametric estimation of univariate monotone and unimodal densities usingthe maximum smoothed likelihood approach. The monotone estimator is the derivative of the least concave majorant of the distribution correspondingto a kernel estimator.We prove that the mapping on distributions $\Phi$ with density $\varphi$, $$\varphi \mapsto \text{the derivative of the least concave majorant of $\Phi},$$ ¶ is a contraction in all $L^P$ norms $(1 \leq p \leq \infty)$, and some other “distances” such as the Hellinger and Kullback–Leibler distances. The contractivity implies error bounds for monotone density estimation. Almost the same error bounds hold for unimodal estimation.
Publié le : 2000-05-14
Classification:  Maximum likelihood estimation,  monotone and unimodal densities,  least concave majorants,  contractions,  $L^1$ error bounds,  62G07
@article{1015952005,
     author = {Eggermont, P. P. B. and LaRiccia, V. N.},
     title = {Maximum likelihood estimation of smooth monotone and unimodal
			 densities},
     journal = {Ann. Statist.},
     volume = {28},
     number = {3},
     year = {2000},
     pages = { 922-947},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1015952005}
}
Eggermont, P. P. B.; LaRiccia, V. N. Maximum likelihood estimation of smooth monotone and unimodal
			 densities. Ann. Statist., Tome 28 (2000) no. 3, pp.  922-947. http://gdmltest.u-ga.fr/item/1015952005/