Estimating structured correlation matrices in smooth Gaussian random field models
Loh, Wei-Liem ; Lam, Tao-Kai
Ann. Statist., Tome 28 (2000) no. 3, p. 880-904 / Harvested from Project Euclid
This article considers the estimation of structured correlation matrices in infinitely differentiable Gaussian random field models.The problem is essentially motivated by the stochastic modeling of smooth deterministic responses in computer experiments.In particular, the log-likelihood function is determined explicitly in closed-form and the sieve maximum likelihood estimators are shown to be strongly consistent under mild conditions.
Publié le : 2000-05-14
Classification:  Computer experiment,  sieve maximum likelihood estimation,  smooth Gaussian random field,  strong consistency,  structured correlation matrix,  62D05,  62E20,  62G15
@article{1015952003,
     author = {Loh, Wei-Liem and Lam, Tao-Kai},
     title = {Estimating structured correlation matrices in smooth Gaussian
			 random field models},
     journal = {Ann. Statist.},
     volume = {28},
     number = {3},
     year = {2000},
     pages = { 880-904},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1015952003}
}
Loh, Wei-Liem; Lam, Tao-Kai. Estimating structured correlation matrices in smooth Gaussian
			 random field models. Ann. Statist., Tome 28 (2000) no. 3, pp.  880-904. http://gdmltest.u-ga.fr/item/1015952003/