Marginal models for categorical data
Bergsma, Wicher P. ; Rudas, Tamás
Ann. Statist., Tome 30 (2002) no. 1, p. 140-159 / Harvested from Project Euclid
Statistical models defined by imposing restrictions on marginal distributions of contingency tables have received considerable attention recently. This paper introduces a general definition of marginal log-linear parameters and describes conditions for a marginal log-linear parameter to be a smooth parameterization of the distribution and to be variation independent. Statistical models defined by imposing affine restrictions on the marginal log-linear parameters are investigated. These models generalize ordinary log-linear and multivariate logistic models. Sufficient conditions for a log-affine marginal model to be nonempty and to be a curved exponential family are given. Standard large-sample theory is shown to apply to maximum likelihood estimation of log-affine marginal models for a variety of sampling procedures.
Publié le : 2002-02-14
Classification:  Marginal log-linear parameters,  log-affine and log-linear marginal models,  smooth parameterization,  variation independence,  existence and connectedness of a model,  curved exponential family,  asymptotic normality of maximum likelihood estimates,  62H17,  62E99
@article{1015362188,
     author = {Bergsma, Wicher P. and Rudas, Tam\'as},
     title = {Marginal models for categorical data},
     journal = {Ann. Statist.},
     volume = {30},
     number = {1},
     year = {2002},
     pages = { 140-159},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1015362188}
}
Bergsma, Wicher P.; Rudas, Tamás. Marginal models for categorical data. Ann. Statist., Tome 30 (2002) no. 1, pp.  140-159. http://gdmltest.u-ga.fr/item/1015362188/