Entropic Repulsion and the Maximum of the two-dimensional harmonic
Bolthausen, Erwin ; Deuschel, Jean-Dominique ; Giacomin, Giambattista
Ann. Probab., Tome 29 (2001) no. 1, p. 1670-1692 / Harvested from Project Euclid
We consider the lattice version of the free field in two dimensions (also called harmonic crystal). The main aim of the paper is to discuss quantitatively the entropic repulsion of the random surface in the presence of a hard wall. The basic ingredient of the proof is the analysis of the maximum of the field which requires a multiscale analysis reducing the problem essentially to a problem on a field with a tree structure.
Publié le : 2001-10-14
Classification:  Free field,  effective interface models,  entropic repulsion,  large deviations,  extrema of Gaussian fields,  multiscale decomposition,  60K35,  60G15,  82B41
@article{1015345767,
     author = {Bolthausen, Erwin and Deuschel, Jean-Dominique and Giacomin, Giambattista},
     title = {Entropic Repulsion and the Maximum of the two-dimensional
		 harmonic},
     journal = {Ann. Probab.},
     volume = {29},
     number = {1},
     year = {2001},
     pages = { 1670-1692},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1015345767}
}
Bolthausen, Erwin; Deuschel, Jean-Dominique; Giacomin, Giambattista. Entropic Repulsion and the Maximum of the two-dimensional
		 harmonic. Ann. Probab., Tome 29 (2001) no. 1, pp.  1670-1692. http://gdmltest.u-ga.fr/item/1015345767/