The Borel–Cantelli Lemmas, Probability Laws and Kolmogorov Complexity
Davie, George
Ann. Probab., Tome 29 (2001) no. 1, p. 1426-1434 / Harvested from Project Euclid
We formulate effective versions of the Borel–Cantelli lemmas using a coefficient from Kolmogorov complexity. We then use these effective versions to lift the effective content of the law of large numbers and the law of the iterated logarithm.
Publié le : 2001-10-14
Classification:  Effective Borel-Cantelli lemmas,  Kolmogorov complexity,  compressibility coefficient,  probability law,  68Q30,  60A05
@article{1015345756,
     author = {Davie, George},
     title = {The Borel--Cantelli Lemmas, Probability Laws and Kolmogorov
		 Complexity},
     journal = {Ann. Probab.},
     volume = {29},
     number = {1},
     year = {2001},
     pages = { 1426-1434},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1015345756}
}
Davie, George. The Borel–Cantelli Lemmas, Probability Laws and Kolmogorov
		 Complexity. Ann. Probab., Tome 29 (2001) no. 1, pp.  1426-1434. http://gdmltest.u-ga.fr/item/1015345756/