Equilibrium Fluctuations for $\nabla_{\varphi}$ Interface Model
Giacomin, Giambattista ; Olla, Stefano ; Spohn, Herbert
Ann. Probab., Tome 29 (2001) no. 1, p. 1138-1172 / Harvested from Project Euclid
We study the large scale space–time fluctuations of an interface which is modeled by a massless scalar field with reversible Langevin dynamics. For a strictly convex interaction potential we prove that on a large space–time scale these fluctuations are governed by an infinite-dimensional Ornstein –Uhlenbeck process. Its effective diffusion type covariance matrix is characterized through a variational formula.
Publié le : 2001-07-14
Classification:  Gibbs measures,  interface model,  massless field,  Langevin dynamics,  equilibrium fluctuations,  homogenization,  Giorgi-Nash-Moser and Aronson estimates,  60K35,  82C24
@article{1015345600,
     author = {Giacomin, Giambattista and Olla, Stefano and Spohn, Herbert},
     title = {Equilibrium Fluctuations for $\nabla\_{\varphi}$ Interface
 Model},
     journal = {Ann. Probab.},
     volume = {29},
     number = {1},
     year = {2001},
     pages = { 1138-1172},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1015345600}
}
Giacomin, Giambattista; Olla, Stefano; Spohn, Herbert. Equilibrium Fluctuations for $\nabla_{\varphi}$ Interface
 Model. Ann. Probab., Tome 29 (2001) no. 1, pp.  1138-1172. http://gdmltest.u-ga.fr/item/1015345600/