The Tail of the Stationary Distribution of an Autoregressive Process with Arch(1) Errors
Borkovec, Milan ; Klüppelberg, Claudia
Ann. Appl. Probab., Tome 11 (2001) no. 2, p. 1220-1241 / Harvested from Project Euclid
W consider the class of autoregressive processes with ARCH(1)errors given by the stochastic difference equation $$X_n = \alpha X_{n-1} + \sqrt{\beta + \lambda X_{n-1}^2}\varepsilon_n,\quad n \in \mathbb{N}$$ ¶ where $(\varepsilon_n)_{n \in \mathbb{N}$ are i.i.d random variables. Under general and tractable assumptions we show the existence and uniqueness of a stationary distribution. We prove that the stationary distribution has a Pareto-like tail with a well-specified tail index which depends on $\alpha, \lambda$ and the distribution of the innovations $(\varepsilon_n)_{n \in \mathbb{N}}$. This paper generalizes results for the ARCH(1) process (the case $\alpha = 0$). The generalization requires a new method of proof and we invoke a Tauberian theorem.
Publié le : 2001-11-14
Classification:  ARCH model,  autoregressive process,  geometric ergodicity,  heavy tail,  heteroscedastic model,  Markov process,  recurrent Harris chain,  regular variation,  Tauberian theorem,  60H25,  60G10,  60J05
@article{1015345401,
     author = {Borkovec, Milan and Kl\"uppelberg, Claudia},
     title = {The Tail of the Stationary Distribution of an Autoregressive
		 Process with Arch(1) Errors},
     journal = {Ann. Appl. Probab.},
     volume = {11},
     number = {2},
     year = {2001},
     pages = { 1220-1241},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1015345401}
}
Borkovec, Milan; Klüppelberg, Claudia. The Tail of the Stationary Distribution of an Autoregressive
		 Process with Arch(1) Errors. Ann. Appl. Probab., Tome 11 (2001) no. 2, pp.  1220-1241. http://gdmltest.u-ga.fr/item/1015345401/